

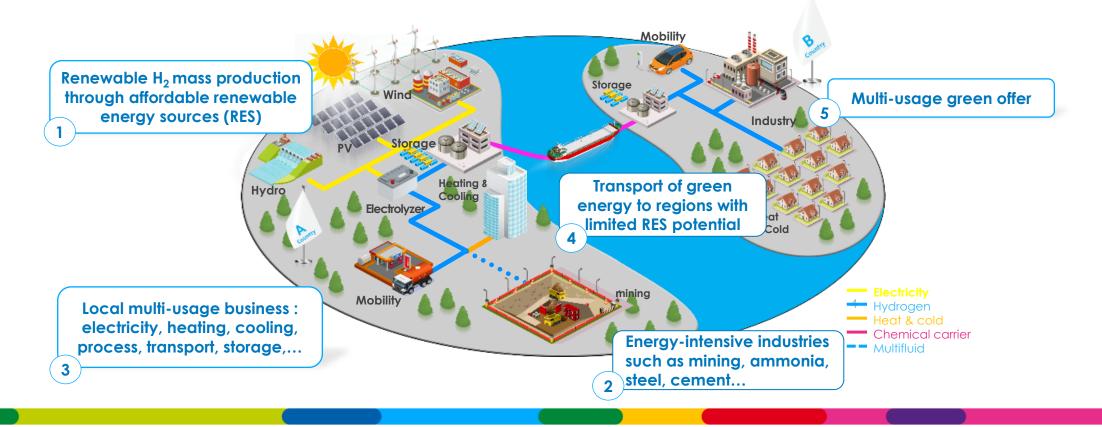


72

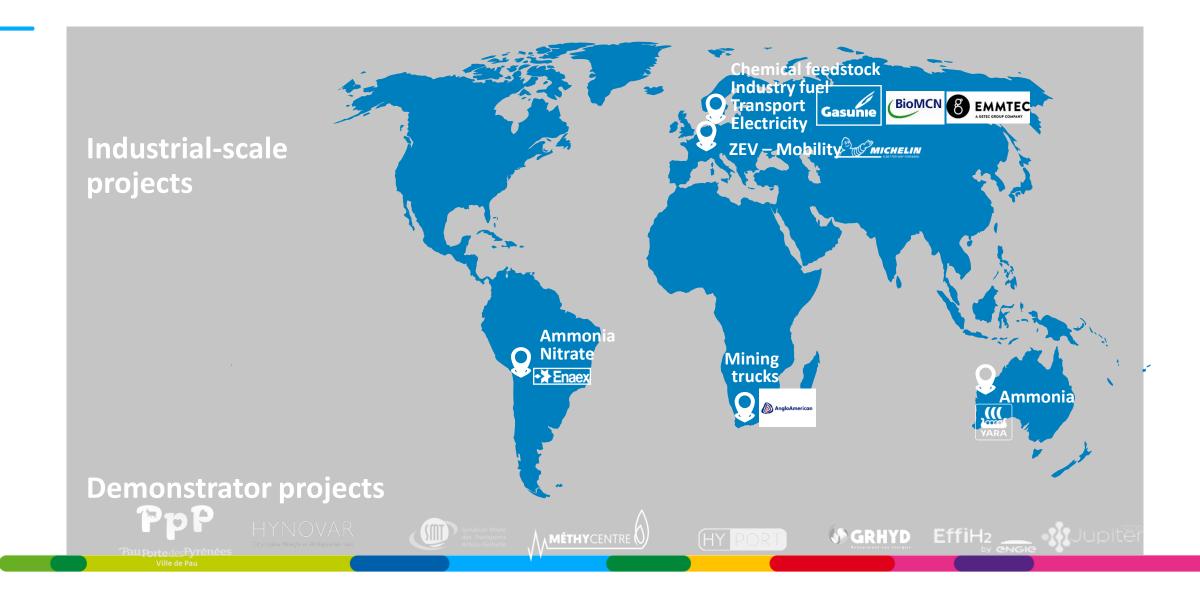
Michaël De Koster, Head of Innovation e-Mobility & Hydrogen

ENGIE: a global energy company with a strong Belgian anchoring

- Our ambition is to become the world leader in CO2 free solutions for our customers: companies, governments and families, both individually and collectively
- 3 energy activities are at the heart of the group's strategy: gas, renewable energy and energy efficiency
- Thanks to the **integrated services** we offer together with our partners, we bring our customers tailor-made solutions 'as a service'.


- Since 150 years, ENGIE is active in Belgium and deeply anchored in society
- Almost 17.000 people work for ENGIE in Belgium, and we are recruiting over 1.000 new employees. 225 employees are solely dedicated to R&D
- Together we deliver low carbon power production, mobility solutions, energy efficiency, energy management, gas and electricity supply, etc.

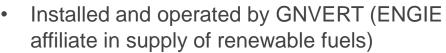
ENGIE in Belgium



ENGIE's Hydrogen Business Strategy to develop industrial-scale renewable hydrogen solutions for regional and global markets

- To design, invest in, build and operate industrial-scale hydrogen solutions
- To provide **turnkey customer solutions** across the value chain

ENGIE is committed and in action globally


H₂ mobility ENGIE is developing H₂ mobility projects in BE

- H₂ mobility is a complementary solution to Battery Electric mobility, and ideally fitted to certain applications
- Public transport is the best opportunity to demonstrate the technology and to prepare the future for H₂ mobility
- For large fleets "habits" are more important than technology, with focus to change management & system efficiency.

ENGIE Flagship project in France: PAU hydrogen buses and station with electrolyser

- Project duration 15 years
- Infrastructure capacity 250 kg/day, 2 compressors, 3 days storage
- Bus refueling at night
- 8 FCEV 18m buses of Van Hool
- Winner of Best Bus Award 2019
- Range: 250 to 350 km/day

H₂ mobility in Belgium:

- ENGIE answered to tender for H₂ bus mobility in Wallonia (2019): 12 FCEV buses in Charleroi with dedicated infrastructure (electrolyser & HRS station) → awaiting decision by Walloon Government
- ENGIE studies 10MW electrolyser @Brussel Energie to develop H2 mobility for garbage trucks and public mobility

H₂ for industry Demonstration projects are needed to pave the way forward

- Renewable H₂ can help to decarbonize industrial processes
- ENGIE wants to play a key role in the development of large scale electrolyzers and a possible Green H₂ Economy

SOME PROJECT EXAMPLES:

Link large **electrolyser to large off-shore wind** deployments in order to help the absorption of the excess power

- Greenports Zeebrugge : consortium study 25MW electrolyser
- Eemshaven : feasibility 100MW electrolyser

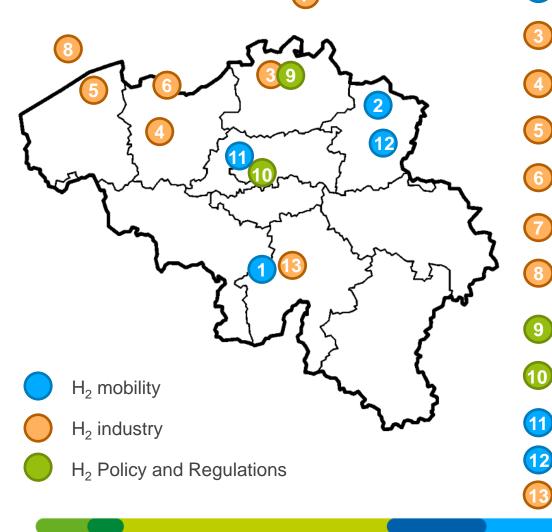
Link large **electrolyser to CCU project** @ CO₂ source to produce e-methanol or e-methane.

- Port of Antwerp : consortium feasibility 5 MW electrolyser (e-methanol)
- Port of Ghent : potential for 300 MW electrolyser in Rodenhuize to produce emethanol for local consumption
- Amercoeur : potential for 50 200 MW electrolyser to produce e-methane
- Les Awirs : potential for 100 MW electrolyser to produce e-methane

Anticipate the future A study on H₂ import and open access backbone

- W-Europe will not be able reach 2050 targets based on electrons only:
 - Insufficient wind- and solar-potential
 - Insufficient HV-transmission capacity
 - Not all processes can be electrified
- Molecules (H-carriers) will be part of the future solution (industry feedstock & energy applications) but need a large scale open-access backbone infrastructure
- A partnership of industrial players (Port of Antwerp/Port of Zeebrugge, Fluxys, DEME, ENGIE, EXMAR, Waterstofnet), active on the complete value chain, have launched a study to investigate the full supply chain (production, storage, import, supply) of H₂ based on renewable energy to NW-Europe.

Definition of target carrier ($H_2 - CH_4 - CH_3OH - LOHC - NH_3$)							
Component	Production high LF RE Electrolysis	On shore transport	Terminalling/ Carrier shift	Shipping	Terminalling / Regasification	Pipeline transport	Use cases
Basis analyse	Analyse literatuur + eigen know how		Analyse literatuur + eigen know how	Analyse literatuur + eigen know how	Analyse literatuur + eigen know how	Analyse literatuur + eigen know how	Analyse literatuur + eigen know how
Deliverable	LCOH (sel. carriers), constraints		LCOH (sel. carriers), constraints	LCOH (selected carriers), constraints	LCOH (selected carriers), constraints	LCOH (selected carriers), constraints	LCOH LCOE LCOF, constraints
Over-all Business Case							
Regulatory and policy							


Key success factors to get the renewable H₂ project development started

- Need for further development of Renewable electricity production
- Dedicated guarantees of origin scheme for green gasses, incl. hydrogen
- Strong (local) authority's commitment to support pilot and demonstration projects
- Public funding or subsidies
- H₂ included in greenify targets of public mobility operators

ENGIE's H₂ project developments in Belgium

1

2

Waste-to-Wheels Wallonia, 0,7 MW electrolyser for 12 FCEV buses (OTW-TEC), tender file submitted 06/2019, awaiting decision by Walloon Region

REVIVE (FCH-JU program), Tractebel is project coordinator, demonstration project with 15 H₂ refuse trucks (e-Trucks Lommel) in 8 European cities including Antwerp, deployment ongoing.

Power-to-Methanol, 2,5 - 5 MW H₂ production linked to CO₂ capture to produce E-methanol (= CCU), feasibility study ongoing

CCU hub Gent, H_2 production linked to CO_2 capture to produce E-methanol (= CCU), feasibility study ongoing

GreenPorts Zeebrugge, research project (ICON VLAIO 2018-2020), H₂ production based on offshore electricity + injection in Fluxys network

Smart Delta Resources/North Sea Port, 1 GW electrolyser, part of IPCEI project "Green Octopus" for BE/NL, feasibility study ongoing

HyNetherlands (Groningen Province NL), 100 MW – 1 GW electrolyser, part of IPCEI project "Green Octopus" for BE/NL, feasibility study finalized

Blauwe Cluster – Offshore H₂ production, Tractebel part of consortium, feasibility study ongoing

 H_2 Import Coalition, study (end 2020) on the possibilities to import large quantities of renewable H_2 , covering production, transport, shipping, terminaling, bunkering and distribution

ENGIE is active partner with Power-to-Gas Cluster, Hydrogen Europe and FCH-JU to propose policy papers on H2 and to advise on regulations on BE and EU level

Waste-to-Wheels Brussels Energy, 10 MW electrolyser, feasibility study ongoing

Genk H₂ Valley, feasibility study ongoing for H₂ mobility

Amercoeur, H_2 production linked to CO_2 capture to produce E-methan (= CCU), feasibility study ongoing

Contact information

Michael De Koster Head of Innovation e-Mobility & Hydrogen michael.dekoster@engie.com M +32 478 65 24 76

Koen Vlaeminck Hydrogen Business Development koen.vlaeminck@engie.com M +32 477 99 73 26